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Abstract
The quantum theory of a finite quantum system with L degrees of freedom is
usually set up by associating it with a Hilbert space H of dimension d(L) and
identifying observables and states in the matrix algebra Md(C). For the case
d = 2m, m integer, this algebra can be identified with the Clifford algebra
Cl2m. The case of d = 2m dimensions is simply realized by a system with m
dichotomic degrees of freedom, an m-qubit system for instance. The physically
relevant new point is the appearance of a new (symmetry-?)group SO(2m). A
possible interpretation of the space in which this group operates is proposed. It
is shown that the eigenvalues of m-qubit-type states only depend on SO(2m)-
invariants. We use this fact to determine state parameter domains (generalized
Bloch spheres) for states classified as SO(2m)-tensors. The classification of
states and interactions of components of a physical m-qubit system as k-tensors
and pseudotensors (0 � k � m) leads to rules similar to those found in
elementary quantum mechanics. The question of electromagnetic interactions
is shortly broached. We sketch, pars pro toto, a graphical interpretation of
tensor contractions appearing in perturbative expansions.

PACS numbers: 02.10.Hh, 03.65.Fd

1. Introduction

The use of algebraic notions for uncovering structures in state spaces of m-qubit systems has
found some attention in the literature [1, 2, 4]. It is of interest to present the results of the
former two papers in a simplified form which however yields the essential results. This might
be useful to elucidate differences of this approach to the concept pursued in this paper:
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m-qubit states ρ are embedded in the 22m-dimensional R-linear Hilbert space H of Hermitian
2m × 2m matrices; the roots {xi} of the characteristic polynomial

P2m = det(ρ − xI) =
∑

i=0,...,2m

(−1)2m−i

Aix
i

are related to the coefficients Ai in the well-known manner (N := 2m)

AN = 1

AN−1 =
∑

i=1,...,N

xi

AN−3 =
all pairs {i,j}∑

i,j=1,...,N

xixj

AN−4 =
all triples {i,j,k}∑
i,j,k=1,...,N

xixjxk

...

A0 = x1x2 · · · xN−1xN .

Of course the eigenvalues {xi} of the state ρ and the coefficients {Ai} are SU(2m)

invariants. Hence the above relations can be rewritten in terms of powers of tr(ρk), k =
1, . . . , 2m. We have

AN = 1

AN−1 = tr(ρ)

AN−3 = (tr(ρ)2 − tr(ρ2))/2

AN−4 = (tr(ρ)3 + 2tr(ρ3) − 3tr(ρ2) tr(ρ))/6

AN−5 = (tr(ρ)4 − 6tr(ρ4) + 8tr(ρ) tr(ρ3) + 3(tr(ρ2))2 − 6tr(ρ2)(tr(ρ))2)/24
...
...

A0 = etr(log(ρ)).

These relations serve to express the Descartes necessary and sufficient conditions (ρ is
Hermitian)

Ai � 0 for i = 0, . . . , N

for the positivity of ρ in terms of 2m − 1 parameters

tr(ρk), k = 2, . . . , 22m;
tr(ρ) = 1 (for normalization)

instead of the original 22m − 1 matrix elements ρi,j . As we see the notion of SU(2m)-
invariance leads to conceptual simplifications. For example for state configurations close to
a microcanonical distribution terms tr(ρk) may be neglected (k small but sufficiently large) in
determining approximate state domains for sufficiently large numbers of degrees of freedom.

On the other hand it should be noted that the SU(2m)-generation of states from their
spectrum (� := {λi, i = 1, . . . , 2m} −→ ρdiag)

ρ� = U ∗ρdiagU, U ∈ SU(2m)
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seems, physically seen, not to be particularly suited e.g. to distinguish entangled and non-
entangled states in the classes ρ�.

We intend to pursue quite a different line of argumentation. As the Hilbert space of an
m-qubit system we choose to take

(C2)⊗m = C2m; (1)

sets of observables are in M2m(C), the algebra of complex 2m × 2m matrices. The key
observation which we are going to exploit is that M2m(C) can be identified with a Clifford
algebra Cl(V, Q) generated by a 2m-dimensional vector space V and a quadratic form Q
on it.

Clifford algebras have a rich structure which lends itself to a new analysis of various
aspects of m-qubit states and their observables. The natural basis given in terms of generalized
Dirac matrices is useful for the calculations of domains for state parameters [4]. New insight
will be gained from an embedding of the spin group Spin(V,Q) into Cl(V,Q). It acts in
Cl(V,Q) and on V under its homomorphic image SO(V,Q). The Hilbert space C2m

of
the m-qubit system can be decomposed into two non-equivalent half-spin representations of
Spin(V,Q) of dimensions 2m−1. The sets of pure and mixed states are given as density
matrices and identified as Hermitian positive elements of Cl. The set of all density matrices is
a generalization of the Bloch sphere for m = 1, a closed and convex subset of Cl.

Speaking in less formal terms we observe the following features:

• The identification of M2m(C) (in which states are represented as the subset of Hermitian,
positive and normalized matrices (→ density matrices) and observables as linear operators
on it) with the corresponding Clifford algebra leads us, and that in a sense is the main
point, to the introduction of the real linear space V = R2m and the group SO2m acting on
it. The filtration and the vector space isomorphisms of Clifford algebras to be described
below yield an alternative view of states as (direct sums of) antisymmetric tensors in the
exterior algebra �∗V.

• A possible physical interpretation of the space V can be given along the following lines.
We write m-qubit states in a basis generated by m-fold direct products of qubit states: the
up–down projections in each of the m qubits of the m-qubit, 2m altogether1, represent the
coordinates of a vector in V. These coordinates can be given an interpretation as classical
probabilities, the space V serves as support for probability distributions the motion of
which is determined by classical equations.

• Our construction can be seen as an analog to the well-known discription of relativistic point
particles, the Dirac theory. There V is the Minkowsky spacetime continuum, SO(3, 1),
the Lorentz group, stands for SO2m in the m-qubit case, the Dirac algebra for Cl(V,Q).

• The dual view of m-qubit states as elements of the exterior algebra �∗V brings us to
the important observation that SU(22m) invariant m-qubit observables can be expressed
in terms of SO2m invariants which is considering dimensions (2m to 22m) a substantial
simplification for answering many questions. The question of parameter domains for
m-qubit states is an example.

The points we shall address in this paper are first to construct explicitly parameter domains
for 2- and 3-partite systems for specific tensor configurations thus extending the results
obtained in an earlier publication. Secondly a graphical representation of m-qubit states and
the interaction between their constituents is introduced.

1 Actually only 2m − 1 because of normalization and a projective formulation seems to be in place, to avoid
unnessesary precision and hence complication we refrain from spelling out details.
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2. Clifford algebras

In this section we collect relevant definitions and relations [3] which we need when discussing
properties of m-qubit states interpreted as elements of a Clifford algebra. Uncovering
the algebraic structure of an m-qubit state will lead to simplifications when it comes to
explicit realizations of the latter, to novel ansatz in establishing novel, physically justified
approximation schemes. Furthermore and most importantly, a well-founded formulation of
the dynamics of m-qubit systems, equations of motion of a Dirac equation type will emerge.
Needless to say, we shall not attempt to present a self-contained and sufficiently complete
presentation of Clifford algebras and their geometries but rather restrict ourselves to sketch a
coherent and naturally self-contained reminder of the main facts pertinent to our story, medias
in res.

Let V be a vector space over a field K (we assume once and forever char(K) = 0, i.e. we
assume K = R, C and exclude the critical case of char(K) = 2) and Q : V −→ K a quadratic
form on V.

A Clifford algebra Cl(V,Q) is then an associative algebra over K with
unity I together with a linear map

ι1 : V −→ Cl(V,Q)

defined by the universal property that, an associative K-algebra A and a linear map

ι2 : V −→ A with

ι2(v)2 = Q(v)I for all v ∈ V

given, there is a unique algebra homomorphism

κ : Cl(V,Q) −→ A

subject to the condition that the diagram

commute, i.e. κ ◦ ι1 = ι2.
This characterization of Clifford algebras leads to structural insight. Given a morphism

η : (V,Q) −→ (V′,Q′),

i.e. a K−linear map leaving the quadratic form Q invariant, then there is, we conclude, an
induced homomorphism (an isomorphism if η is bijective)

η̃ : Cl(V,Q) −→ Cl(V′,Q′).

Furthermore, given

η′ : (V′,Q′) −→ (V′′,Q′′)

we have

η̃ ◦ η′ = η̃ ◦ η̃′.

In this way the Q-orthogonal group O(V,Q) = {η ∈ GL(V)|η∗Q = Q} lifts into the group
of automorphisms

O(V,Q) −→ Aut(Cl(V,Q)). (2)

4
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The linear map

ε : v �→ −v

on V leaves Q invariant and extends to an automorphism

ε̃ : Cl(V,Q) −→ Cl(V,Q).

Since ε̃2 = I the Clifford algebra decomposes into even and odd parts

Cl(V,Q) = Cl(V,Q)0 ⊕ Cl(V,Q)1

Cl(V,Q)j = {γ ∈ Cl(V,Q)|ε̃(γ ) = (−1)j γ } −→
Cl(V,Q) is a Z2-graded algebra.

A more explicit realization of the latter will be described now. Let

T(V) :=
∞∑

s=0

⊗
sV

denote the tensor algebra of V and impose the defining map ι2 by factoring the two-sided ideal
IQ generated by the form v ⊗ v − Q(v)I(2),

IQ =
∑
i,j

ti ⊗ (v ⊗ v − Q(v)I(2)) ⊗ tj

tk ∈
⊗

kV ⊂ T(V)have (pure) degree k, k = i, j

I(2) is the unity for k = 2

to define

Cl(V,Q) := T(V)/IQ.

The canonical projection

πQ : T −→ Cl(V,Q)

provides us with a natural embedding

ι1 : V ↪→ Cl(V,Q).

An important role in our argumentations plays the fact that the Clifford algebra is a filtered
algebra. This becomes clear when we consider the relationship between the Clifford algebra
Cl(V,Q) over V,Q and the exterior algebra �∗V. The tensor algebra has a natural filtration

F̄0 ⊂ F̄1 ⊂ F̄2 ⊂ · · · ⊂ T(V)

with

F̄k =
∑
l�k

⊗
lV.

Taking

Fk := πQ(F̄k)

the filtration

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Cl(V,Q)

obtains.
We furthermore have

Fi ⊗ Fj = Fi+j ;
5
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a multiplication which descends to the map

Fi/Fi−1 ⊗ Fj /Fj−1 −→ Fi+j /Fi+j−1.

The algebra spanned by2 the quotients F∗k := Fk/Fk−1

F∗ :=
⊕
k=0

F∗k (3)

is called the associated graded algebra. The

• Proposition
For any quadratic form Q there is a canonical vector isomorphism ι

ι : �∗V −→ Cl(V,Q)

compatible with the filtration described above. The associated graded algebra F∗ is
naturally isomorphic to the exterior algebra �∗V

was used in [4] for the classification of quantum states according to their tensor character.
A Z2-graded tensor product for Clifford algebras is introduced as

(F ⊗̂ G)0 = F0 ⊗ G0 + F1 ⊗ G1

(F ⊗̂ G)1 = F0 ⊗ G1 + F1 ⊗ G0.

For the formulation of a cluster decomposition of m-qubit states we need the following
observation:

• Let

V = V1 ⊕ V2

denote a decomposition in Q-orthogonal subspaces V1,2.
Then the Clifford algebra Cl(V,Q) is isomorphic to the graded product
Cl(V1,Q1) ⊗̂ Cl(V2,Q2) of Clifford algebras over V1,2 (the Q1,2 are of course the
restrictions of Q to V1,2)

ι : Cl(V,Q) −→ Cl(V1,Q1) ⊗̂ Cl(V2,Q2).

The tensor algebra T(V) has an involution defined by reversal of the order of elements in
products

v1 ⊗ v2 ⊗ · · · ⊗ vk −→ vk ⊗ · · · ⊗ v2 ⊗ v1.

This involution preserves the ideal IQ and hence descends to a map, the transposition

( )t : Cl(V,Q) −→ Cl(V,Q). (4)

This map is an anti-automorphism

(c1 · c2)
t = ct

2c
t
1.

A bilinear form (scalar product) is defined from Q in the usual manner

〈w, v〉 := (Q(w + v) − Q(w) − Q(v))/2.

The defining relation ι2(v)2 = Q(v)I then takes its more familiar form of an anticommutation
relation

ι2(v) · ι2(w) + ι2(w) · ι2(v) = 2〈v,w〉I.
2 Spanned by vi1 ⊗ vi2 ⊗ · · · ⊗ vik , vil ∈ V.

6
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Assuming from now on whenever it does not seem to lead to confusion the identification of
notation of image and preimage, we write the simplified version of this equation as

vw + wv = 2〈v,w〉I. (5)

Extending Q to tensor products of vi ∈ V 3

Q(v1 ⊗ v2 ⊗ · · · ⊗ vk) := Q(v1)Q(v2) · · · Q(vk) vj ∈ V

which is simply the scalar part of (v1 ⊗ v2 ⊗ · · · ⊗ vk)
t ⊗ (v1 ⊗ v2 ⊗ · · · ⊗ vk). This leads to

the extended definition (〈s〉 denotes the scalar part of s ∈ Cl(V,Q))

Q(r) := 〈rt r〉 r ∈ Cl(V,Q).

The associated bilinear form then is written as

〈r, s〉 = 〈rt s〉.
Subgroups of the Clifford algebra are of key importance for the formulation of the dynamics
of m-qubit systems. The subset

Cl(V,Q){×} := {r ∈ Cl(V,Q) | ∃r−1, rr−1 = r−1r = 1}
constitutes obviously a group, the multiplicative group of units in the Clifford algebra, its
dimension is

dim(Cl(V,Q){×}) =
n∑

k=0

(n

k

)
= 2n.

The Clifford algebra is the Lie algebra of this group

cl
{×}(V,Q) = Cl(V,Q),

its bracket is [r, s] = rs − sr .
This group acts naturally as an automorphism of Cl(V,Q) and we have the

homomorphism, the adjoint representation

Ad : Cl(V,Q){×} −→ Aut(Cl(V,Q))

which is given as

Adr (c) = r−1cε̃(r)

r ∈ Cl(V,Q){×}, c ∈ Cl(V,Q)

ε̃ is the reflection introduced above :ε̃(r) = (−1)degree(r)r.

Take v,w ∈ V ⊂ Cl(V,Q),Q(v) �= 0 and calculate

Adv(w) = −vwv−1 = −vwv/Q(v) = (v2w − 2〈v,w〉v)/Q(v)

= w − 2
〈v,w〉
Q(v)

v.

Geometrically speaking, ε̃(Adv(·)) is the reflection of (·) across the hyperplane 〈·, v〉 = 0.
Let us now consider the subgroup of elements r ∈ Cl(V,Q){×} with

Adr (V) = V,

the Clifford group GCl(V,Q), and observe from the above equation that V ⊂ GCl(V,Q) and
that for v,w ∈ V,Q(v) �= 0 we have

(Ad∗
vQ)(w) := Q(Adv(w)) = Q(w),

i.e. the transformation Adv leaves the quadratic form Q invariant.

3 We tacitly introduce here a basis in V, {e1, e2, . . . , en}, n < ∞ is its dimension, 〈ei , ej 〉 = δij . The Clifford
identity requires ei ⊗ ej + ej ⊗ ei = 0 for i �= j . A basis for Cl(V, Q) is then given as {ei1 ⊗ ei2 ⊗ · · · eik |1 � i1 �
i2 · · · � ik � n, 0 � k � n}.

7



J. Phys. A: Math. Theor. 41 (2008) 145203 K Dietz

GCl(V,Q) maps onto the Q-orthogonal group O(V,Q) and the kernel of this map is not
larger than K∗, the group of non-zero multiples of I

GCl(V,Q)
Ad−→ O(V,Q) with O(V,Q) = {t ∈ GL(V) | t∗Q = Q}.

Splitting the Clifford group into even and odd parts, GCl(V,Q)0 (is a subgroup), and
GCl(V,Q)1 we subsume these findings into two exact sequences

I −→ K∗ −→ GCl(V,Q)
Ad−→ O(V,Q) −→ I

I −→ K∗ −→ GCl(V,Q)0 Ad−→ SO(V,Q) −→ I.

A spinor norm N can be defined as

N(r) := rt r,

and yields, restricted to the Clifford group, GCl(V,Q), a homomorphism

N : GCl −→ K∗.

We now define the groups Pin and Spin as the groups generated not by V but by the generalized
unit spheres

Pin(V,Q) = {r ∈ GCl|N(r) = ±I},
the group Spin is the even part of Pin

Spin(V,Q) = Pin(V,Q) ∩ Cl(V,Q)0.

There is a homomorphism from Pin to O(V,Q), its kernel is {+I,−I}. Again we summarize
the last paragraphs in the following exact sequences:

I −→ Z −→ Pin(V,Q)
Ad−→ O(V,Q) −→ I

I −→ Z −→ Spin(V,Q)
Ad−→ SO(V,Q) −→ I

where

Z =
{

{±√
1} I

{±√
1,±√−1}I for K = R or K = C respectively.

The group Spin(V,Q) is a cover of the special orthogonal group
SO(V,Q)

Spin(V,Q) −→ Spin(V,Q)/{+I,−I} ≈−→ SO(V,Q)

where the first arrow indicates the covering homomorphism.

3. Tensor states

In this section we turn to a classification of m-qubit states which has its origin in the
identification of the underlying linear space, the space M2m(C) of 2m × 2m complex matrices,
with the complex Clifford algebra Cl2m(V,Q) discussed above. The filtration (3) then leads to a
classification of m-qubit states as SO(2m)-tensors (and pseudotensors) of degree l, 0 � l � m.

Now take the Euclidean quadratic form

Q(v) = v2

8
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and construct a basis of Cl2m(V,Q). The anticommutation relation (5) has 22m-dimensional
representations which we denote by{

�
{2m,1}
i

∣∣ i = 1, . . . , 2m
}

(6)

where the �
{2m,1}
i are traceless, Hermitian matrices with

�
{2m,1}
i · �

{2m,1}
j + �

{2m,1}
j · �

{2m,1}
i = 2δi,j i, j = 1, . . . , 2m. (7)

From these matrices we construct

a basis in the 22m-dimensional the representation space =
B̄ = {�{2m,0}, �{2m,1}, . . . , �{2m,2m}} (8)

with

�{2m,k} = {
(−i)Sg(k)�

{2m,1}
i1

· �
{2m,1}
i2

· · ·�2m,1
ik

∣∣i1 < i2, · · · < ik, 1 � il � 2m
}

with

Sg(k) =
{

0 for k mod(4) = 0, 1
1 for k mod(4) = 2, 3

and 1 � k � 2m

�{2m,0} = I, the unit in the representation space.

Introducing the notion of pseudotensors by first constructing the ‘pseudo-scalar unit’

�{5}{2m} = (−i)Sg(2m)�
{2m,1}
1 · �

{2m,1}
2 · · · �{2m,1}

2m (9)

which anti-commutes with the ‘generalized Dirac’ matrices

�{2m,1} �
{2m,1}
j · �{5}{2m} + �

{2m,1}
j · �{5}{2m} = 0, j = 1, . . . , 2m, (10)

we simplify matters by defining

�̃{2m,m−1} := −i�{5}{2m} · �{2m,m−1}

�̃{2m,m−2} := −i�{5}{2m} · �{2m,m−2}

... (11)

�̃{2m,0} := −i�{5}{2m} · �{2m,0} (12)

and write the basis of our calculations as

B = {�{2m,0}, �{2m,1}, . . . , �{2m,m−1}, �{2m,m},
�̃{2m,m−1}, . . . , �̃{2m,2m−1}, �̃{2m,0}} (13)

:= {γ {2m,i}|i = 0, · · · , 2m}. (14)

Note that γ {2m,m+k} is a (m–k)-tensor, k = 1, . . . , m. Tensors and pseudotensors differ in their
behaviour under (·)t . States written in this basis then read

ρ := 1

22m

2m∑
i=0

α{i} · γ {2m,i}. (15)

Tensor states in particular are given as

ρ{i} = 1

22m
(γ {2m,0} + α{i} · γ {2m,i}), (16)

9
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the α{i} ∈ �∗R2m are antisymmetric tensors, normalization requires

trace(ρ) = 1 ⇐⇒ α{0} = 1.

The dot indicates tensor contraction

α{i} · γ {2m,i} =
∑

k1,...,ki

α
{i}
k1,k2,...,ki

γ
{2m,i}
k1,k2,...,ki

.

We determine the domains for the (real) tensor elements α
{i}
k1,...,ki

guaranteeing positivity and
normalization of a state ρ. The pivot of our calculations is the characteristic polynomial of ρ.
The domains can then be deduced from Descartes’ rule:

• The characteristic polynomial is written as

Pol{2m} = Determinant(ρ − λI{2m})

=
2m∑
k=0

Ak(−λ)k.

• Normalization obviously implies

A1 = 1.

• Necessary and sufficient conditions for the positivity of the eigenvalues {λj , j =
1, . . . , 2m} are

(a) The coefficients Ak are such that the {λi} are real, a condition which is guaranteed
here by hermiticity of ρ.

(b) The coefficients Ak fulfil the inequalities

Ak � 0.

We follow the method of calculating the eigenvalues, the probability spectrum, express the
latter in terms of SO(2m)-invariants and determine the domains of the latter guaranteeing
positivity, i.e. the generalized Bloch spheres. The spectra for m = 2 and m = 3, vectors, 2-
tensors and 3-tensors are explicitly calculated. Since the spectra for vectors and pseudovectors,
tensors and the corresponding pseudotensors are identical the bases for m = 2, 3 Clifford
algebras are treated. We have

• m = 2

– Vector:

α{1} = [α1, . . . , α4]

Rv := ‖v‖2 =
4∑

i=1

αi
2.

For the spectrum we get

λ1,2 = 1
4 (1 ±

√
R) λ3,4 = 1

4 (1 ±
√

R)

and observe two-fold degeneracy.

– 2-tensor

α{2} =

⎡
⎢⎢⎢⎣

0 α1,2 . . . α1,2m

−α1,2 0 . . . α2,2m

...

−α1,2m . . . . . . 0

⎤
⎥⎥⎥⎦ antisymmetric.

For the spectrum we get

10
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{λ} = {
1
4 (1 ±

√
R2 ±

√
X)

}
where

R2 =
∑
i<k

α2
i,kis the 1

2 (Frobenius norm)2 of α{2}:

‖α{2}‖Frob
2 = trace(α{2}t · α{2}),

( )t is the transposition introduced in (4)

X = 2
(
R2

2 − trace
({α{2}t · α{2}}2

)/
2
)
,

the spectrum is expressed in terms of traces of tensors in R2m

(see the corresponding formulae in the introduction where

traces pertain to R2m

).

• m = 3

– Vector

β{1} = [
β

{1}
1 , β

{1}
2 , . . . , β

{1}
6

]
Rv =

6∑
i=1

β
{1}
i

2

For the spectrum we get

λ1,2 = 1
4 (1 ±

√
Rv) λ3,4 = 1

4 (1 ±
√

Rv) λ5,6 = 1
4 (1 ±

√
Rv)

and observe three − fold degeneracy

– 2-tensor

β{2} =

⎡
⎢⎢⎢⎣

0 β1,2 . . . β1,2m

−β1,2 0 . . . β2,2m

...

−β1,2m . . . . . . 0

⎤
⎥⎥⎥⎦ antisymmetric.

For the spectrum we get

{λ1,...,4} = {
1
8 (1 ±

√
R2 ±

√
X)

}
{λ5,...,8} = {

1
8 (1 ±

√
R2 ±

√
X)

}
where

R2 =
∑
i<k

β2
i,k is the 1

2 (Frobenius norm)2 of β{2},

X = 2
(
R2

2 − trace(β{2}4
)
/

2
)
,

the spectrum is two-fold degenerate and expressed in terms of traces

of tensors in R2m, the same formulae hold as in the m = 2 case.

– 3-tensor

δ{3} = (δi,j,k) totally antisymmetric

For the spectrum we get

{λ1,...,4} = {
1
8 (1 ±

√
R3 ±

√
X)

}
{λ5,...,8} = {

1
8 (1 ±

√
R3 ±

√
X)

}
11
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where

R3 =
∑

i<j<k

δ2
i,j,k =:

1

3!
trace(δt · δ)

X = 2

(
R2

3 − 1

3!
traceirred((δ

t · δ)2)

)
.

We give an explicit expression for traceirred((δ
t · δ)2)

traceirred((δ
t · δ)2) :=∑

[k1,k2,k5],[k2,k3,k6],[k3,k4,k5],[k1,k4,k6]
antisymmetric

δk1,k2,k5δk2,k3,k6δk3,k4,k5δk1,k4,k6 (17)

and define it after the introduction of a graphical interpretation of trace- contractions
in the following section.

Ending this section we propose a universal formula for 2-tensors in m-qubit states. Considering
the antisymmetry it is convenient to introduce a definition of traces which accounts for it. We
define

trace{S}() := 1

l!
trace()

where () is some expression involving (anti)symmetric l-tensors (18)

αl, 1 � l � 2m, extrapolate from the cases m = 2, 3

and propose for all m

• 22(m−2) quadruplets of eigenvalues

• λ = 1

2m

(
1 ±

√
T2 ±

√
{T2}2 − T4

)
(19)

where T2 = trace{S}(αt · α) T4 = trace{S}({αt · α}2).

The same formula holds for 3-tensors (l = 3) if we replace T4 by T4irred.
Finally from (19) we read off the parameter domains for (16) to be a state

1 � T2 ±
√

T 2
2 − T4 � 0. (20)

The inequality

T 2
2 � T4

is just the Schwarz inequality.

4. Presentation in terms of graphs

In the following we shall sketch a possible application of the idea of classifying quantum
states as antisymmetric real tensors on a 2m-dimensional vector space by representing these
states as graphs which in term can be used to visualize, e.g. perturbative expansions and thus
to relate specific features of interactions to interactive modifications of states and expectation
values.

By imbedding states of m-qubit systems in the Clifford algebra Cl2m we obtained its
filtration and thus a dual representation of states in terms of real, antisymmtric tensors, i.e.
elements of the corresponding exterior algebra �∗R2m.

Its elements are represented as vertices, indices as incoming (upper index) and outgoing
(lower index). The distinction of upper and lower indices is introduced here to facilitate book
keeping and of course has no geometrical meaning (in specifying the Clifford algebra we

12
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Vector ai corresponds to: i •

2-Tensor aij corresponds to: i • j

3-Tensor ai jk corresponds to: i • k

j

Figure 1. Graphic representation of tensors.

introduced an Euclidean quadratic form Q(v) = v2). The graphical correspondence we draw
as follows (figure 1):

Graphs are now built by simply identifying in- and outgoing arrows to obtain the desired
index structure. Relevant to the present context is the graphical representation of traces of
powers of tensors. Particularly powerful is the graphical representation when a systematic
study of interactions, mutual and with external sources, is required for a significant physical
description of the underlying phenomena. We begin with a systematic study of traces and then
turn to the case when interactions are important. More precisely we draw the graphs for traces
of second- and fourth-order powers of 1-, 2-, 3-tensors. In the following we use the Einstein
summation convention (figure 2):
repeated upper–lower indices are summed over.

The fact that for the case of 3-vertices only irreducible graphs contribute in equation (19),
found in actual calculations for m = 2, 3, reminds us of a theorem valid in the quantum
field theory of statistical mechanics: a perturbative expansion of the free energy in terms of
interactions contains only irreducible graphs. We refrain from pursueing this point any further.

A second point to note is the SO2m-invariance of the graphs introduced above.
Let Oi

j denote a SO2m-transformation. Since

Oi
j a

j...
... = a′i...

...

upper indices transform with O,

Oi
j a

...
i... = a′...

j ...

lower indices transform with Ot

and Ot i
j Oj

k = δi
k by the very definition, the invariance is obvious.

5. Concluding remarks

The identification of the algebra of observables operating in the Hilbert space H = C2m

associated with an m-qubit system with the Clifford algebra Cl2m has various physically
interesting consequences for the structure of m-qubit states. In section 1 we collected
various concepts and formulae of the theory of Clifford algebras. Of particular interest is
the construction of filtrations which as we show in detail leads to a dual representation of
states in terms of SO(2m)-tensors. As an application we point out that the eigenvalues of a
state ρ depend only on SO(2m)-invariants, parameter domains expressed in terms of tensor
contractions in the dual representation follow. For explicit calculations we realize this dual
representation by working in the R-linear subspace of Hermitian matrices in M2m(C) whose
basis is explicitly constructed from generalized Euclidean Dirac matrices. Explicit equations

13
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Figure 2. Graphical representation of traces.

for parameter domains, the generalized Bloch spheres, for the cases of 1-, 2-, 3-tensors are
given (equation (20)). Geometrically speaking, these domains appear as superpositions of
spheres whose radii are determined by the Frobenius norm of the involved tensors.

As a further application we sketch a graphical representation of the tensor contractions
occurring in the perturbative expansions of expectation values of observables classified as
SO(2m)-tensors. The importance of a graphical representation becomes clear when we
introduce interactions and develop a graphical picture of the perturbation expansion in terms
of interaction Hamiltonians.

The equations of motion, the Schrödinger equation

i
.
ρ = [H, ρ]

14
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or in the context of m-qubits eventually more appropriate, the Lindblad equation
.
ρ = −i[H, ρ] + VρV ∗ − 1

2 [ρ, V ∗V ]+

have the following solution

ρ = eiHtρ(0) e−iHt ,

respectively following the modified equation
.
ρS = VSρSV

∗
S − 1

2 [ρS, V
∗
S VS]+

where

ρS = eiHtρ e−iHt and VS = e−iHtV eiHt ,

the Lindblad equation in the Schrödinger picture.
As usual we split the Hamiltonian into a kinetic and an interactive part

H = Hkin + Hint (21)

and compute a perturbative expansion (in order not to overload formulae and graphs we
restrict ourselves to the Schrödinger case). Hkin may contain interaction terms ‘dressing’ the
constituents whose free motion it describes (if the theory allows for it); Hint stands for the
interaction of these constituents.

ρ(t) = ρ0 + i[Hint, ρ0] + Hintρ0Hint − 1
2

[
H 2

int, ρ0
]

+ · · · (22)

where ρ0 moves with Hkin

ρ0(t) = eiHkint ρ0(0) e−iHkint .

To take advantage of tensor expansions we write H (and any other observable) as

H =
2m∑
i=0

h{i} γ {2m,i}. (23)

It is immediately seen that perturbative terms lead to a mixing with higher order tensors unless
the Hamiltonian is a SO2m-scalar; e.g. a vector state receives by first-order perturbation a
(l + 1)-tensor contribution from an l-tensor term in the Hamiltonian. Tensor components
([. . .]Anti denotes anti-symmetrization, note that this is automatic in a Clifford algebra)

α′
[i1,...,ik ,j1,...,jl ]Anti

= α
{k}
[i1,...,ik ]Anti

h
{l}
[j1,...,jl ]Anti

appear in the SO2m-expansion of states.
It is well known that the splitting of H = Hkin + Hint is to a large extent arbitrary—part of

the interaction (e.g. with external fields) can be included in Hkin. We simply assume a division
into a scalar, 2-tensor kinetic part and a 4-point interaction

H = h0I + h{2} · γ {2m,2} + h{4} · γ {2m,4}.

For an illustration of a graphical expansion of states we should like to turn to a case of real
interest: the electromagnetic interaction. Within the scope of concluding remarks we sketch
a rather cursory approach to this question, still emphasizing the main issues. The first step is
to attribute a Clifford tensor character to the electromagnetic field. As usual in gauge theory
we couple the electromagnetic potential Ai, i = 1, . . . , 4. It is tempting to take the vector for
m = 2 and write

A := Aiγ
{4,1}
i .

15
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Figure 3. In- and outgoing ‘particles’ interact with external field.

Figure 4. One-photon exchange potential describing the induced ‘particle–particle’ interaction.

Figure 5. A second-order perturbation of a 3-tensor state.

This object has to interact with a ‘matter’-current. We propose

Hmatter-em field = hijkγ
{4,2}
ij γ

{4,1}
k (24)

hijk = εijki1j1k1 α̂
{2}
i1j1

Ak1 , (25)

α̂
{2}
i1j1

is the current—we are not in the position, the dynamics being not sufficiently far developed
here, to discuss immediately arising questions most importantly gauge invariance and current
conservation in the context of m-qubit interactions.

The antisymmetric 3-tensor hi
jk stands for the Yukawa-type interaction in m-qubits and is

represented by the following graph (figure 3):
Allowing for in- and outgoing photons, i.e. absorption and emission of photons, and thus

simulating a picture with a quantized photon field we now construct, tracing out photons, a
4-point interaction. A graphical representation (figure 4) may suffice.

This interaction Hamiltonian is constructed to describe interactions in 2-qubit systems. To
describe electromagnetic interactions in m-qubits with m > 2 we have to devise a Hamiltonian
for pairwise interactions. Let m = 2m{4} be even, define partitions of [1, . . . , 2m] into m{4}

4-plets, and construct m{4}-fold direct products in the following way:

Hint =
∑

all partitions

· · · ⊗ I4 ⊗ H {4} ⊗ I4 · · ·
m{4}−fold product

. (26)

16
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Such a Hint induces interactions between all constituents of an m-qubit; to give an
illustration we take the case of a 3-tensor state (figure 5).

Needless to say, further theoretical specifications are necessary to provide a suitable
machinery for realistic calculations. We hope to present some further results in a forthcoming
publication. Central in our research is the idea described in this paper: embedding states
of m-qubits in the Clifford algebra Cl2m we were led to using its filtration and the vector
space isomorphy with the external algebra �∗V2m to get an embedding of states in real,
antisymmetric l-tensor spaces l = 0, . . . , m (we distinguish tensor- and pseudotensor-spaces).
A classification of states and their visualization as vertices in a graphical language is obtained.
Expanding Hamiltonians in the same way in a Clifford basis, state transitions are characterized
by a change of the degree of tensor interactions and follow analogous tensor-transition
rules controlled by Clebsch–Gordon-type rules. The underlying symmetry group SO2m

and the space V2m in which it operates certainly have physical significance; we offered
an interpretation.
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